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ABSTRACT

A multi-layer Adaptive Linear Element neural network computer program was trained
with back-propagation on physiological response data from nine subjects walking on a
treadmill in two simulated tropical environments. The 100 minute end-point body core
temperatures calculated were compared to the measured responses. It was found that
although correlation was low and simultaneous high specificity and sensitivity were
not displayed, the results were comparable to the predictions from an established
human thermal response prediction programme for these subjects. It is concluded that
the neural network modelling technique has merit in this field and should be explored
further as more data become available.
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Executive Summary

Rapid advancements in computer technology have provided opportunities for
biomedical researchers to develop sophisticated computer models for simulation of
physiological responses under a wide range of environmental conditions. Of particular
military and industrial relevance would be a simulation of human thermoregulation
designed specifically to forecast temperature changes within the body, as well as other
critical physiological variables to indicate heat strain. The availability of these
simulation tools would provide a distinct tactical advantage for military operations in
tropical environments. The ability to predict levels of heat strain would allow military
planners to develop appropriate heat stress management strategies by optimising the
work load for soldiers, resulting in the minimisation of heat casualties and reduced
demand on medical logistics. Such tools have been applied in many UN peacekeeping
missions by the US military and the outcomes were a general reduction in heat
casualties.

The development of empirical algorithms for a computer model to simulate
experimentally measured data requires the selection of mathematical equations
relevant to the thermoregulatory mechanisms of the body. These equations are refined
by reiterated regression analysis until the prediction errors cannot be further
minimised. In contrast, a neural networking technique starts with sets of input
parameters, the corresponding sets of output results and a large matrix of arbitrarily
initialised numbers. To 'train’' the network, each set of input parameters is used to
calculate one set of output values, which will have some errors. A portion of the
output errors is then fed back into the network (back propagated) to adjust the values
in the matrix. This process is repeated until the errors cannot be further reduced. The
major difference from the regression technique is that the requirement for advance
knowledge of the nature of the relationships between input and output is minimal. The
matrix, after training, can be used to generate outputs from parameters which were
not part of the training process.

This study describes the construction of a neural network program and the training of
its matrices on experimental data obtained during a laboratory study with soldiers
exercising in environmental chambers under two different conditions similar to typical
Pilbara and Townsville weather conditions. The predictions from this program yielded
a 'fit' to the experimental data comparable to the USARIEM heat strain predictive
program. It is concluded that the application of neural networking may have potential
to provide a capability to predict physiological responses in military personnel.
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1. Introduction

Computer programs have been developed over many years for simulation of
physiological responses to exercise under differing conditions (Berlin, Stroschein and
Goldman, 1975). Of particular relevance to the Australian Defence Force (ADF) is the
ability of these programs to predict physiological strain of soldiers operating in
Northern Australia. An empirical heat strain computer program developed by the US
Army Research Institute of Environmental Medicine (USARIEM) was used extensively
during the Gulf War and during recent US peacekeeping missions in Somalia, Rwanda,
Cuba and Haiti. Heat casualties reported in these military operations were
substantially fewer than expected. It was suggested that a combination of increased
awareness of the risk of thermal stress and the development of preventive guidance
based on predictions from the USARIEM computer program had greatly minimised
the occurrence of heat injuries (Reardon et. al., 1997).

There are two approaches to developing simulation programs for prediction of thermal
strain. The first attempts to build a simulation (or model) of the heat production and
thermal transport processes occurring within the body and computes physiological
responses to changes in environment and activity. (Stolwijk and Hardy, 1977). An
important characteristic of this approach is the incorporation of feedback and other
control mechanisms to regulate heat flow. The active systems in the model, such as the
dynamics of blood flow, vasoconstriction, vasodilation, sweating and shivering control
the passive heat exchange processes.

The second is an empirical approach which focusses on mathematical equations
derived from statistical analysis of experimental observations of the relationships
between work rate, environmental stress and the clothing ensemble. These equations
allow predictions of thermal strain as a function of time only under specified
conditions for which the experimental data have been gathered. (Givioni and
Goldman, 1972).

The development of suitable algorithms for the implementation of computer programs
from statistical analysis of experimental data has required that the researcher first
select a mathematical equation with due regard for known theory and then perform
successive refinements by repeated regression analysis until an acceptable level of
accuracy has been attained. In contrast, a neural networking technique starts off with
sets of input parameters, the corresponding sets of output results and a large matrix of
arbitrarily initialised numbers. To 'train’ the network, each set of input parameters is
used to calculate one set of output values, which will be in error to some degree. A
portion of the output errors are then fed back into the network (back propagated) to
adjust the values in the matrix of numbers. This process is repeated until some
measure of success achieves an optimal level. The major difference from the regression
technique is that there is no need for advance knowledge of the relationship between
input and output. The matrix is then said to be 'trained' on the input data and can be
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used to generate or 'generalise' output from parameters which were not part of the
training process. !

This study describes the construction of such a neural network program and the
training of its matrices on experimental data obtained during a laboratory study with
soldiers wearing the Disruptive Pattern Combat Uniform (DPCU), the standard
Australian Army uniform (Amos and Egglestone, 1995).

2. Mathematical Basis

The neural network method best suited to the production of an arbitrary number of
linear outputs from an arbitrary number of linear inputs is called the Adaptive Linear
Element (Adaline) with Supervised Back-Propagation as the learning rule (Lippmann,
1987). In this method sets of training data consisting of inputs and the corresponding
outputs must be available. The way such an Adaline works is indicated
diagrammatically below.

Input Normalising Weights Matrix

Vector Vector
5} N Wi Wiz Wis . . Wim
I N2 W21 Wiz Was . . Wom
I N3 Wi1 Wiy Wss . . Wim
l | I | | = i I
I I | | | =: n |

In Nn Wn,l Wn,2 Wn,3 . . Wn,m

Output Bias Vector >  B: B2 Bs . . Bm
| | | = e |
Output Vector > O 0 O . . Om

The elements of this diagram consist of a vector [I] of input numbers, a vector [O] of
output numbers, the weights matrix [W] and two vectors ([N] and [B]). The only
purpose of which is to improve computational accuracy by ‘normalising' data values.
As a consequence of the way real numbers are stored within a computer, precision
decreases as number values diverge from 1.0, therefore the normalising process tends
to force all numbers entering into calculations to be as close to 1.0 as possible.
Consequently each N; will approximate the reciprocal of the mean value of all I and
each B; will approximate the mean value of all O; in the training data.

Processing begins by initialising all the weights in the matrix to be approximately 1.
Outputs (G) are then calculated (Lippmann, 1987) using an equation similar to the
following:
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The generated output values will have some errors. The weights matrix will be
adjusted by back-propagating an arbitrarily chosen fraction (F) of this error. The
training may have to be repeated several times to enable an optimal value for F to be

determined. Each weight then has a new value.
j=1.m

G, -0,
[W,..j =W.-,,(1.0——flgj—J—F>]

i=1l,n

Simultaneous with this back-propagation, some measures of the error levels are
accumulated for later use in determining whether sufficient training has been
conducted. This processing is repeated for each of the training sets. One epoch is said
to be completed when the entire training data has been processed once. At the end of
each epoch, the overall error level for the entire epoch is compared to preceding epochs
and decisions about whether to continue training or the need to modify processing
constants (such as the back-propagation fraction) are made.

This single-layer Adaline often does not have sufficient complexity for subtle real-
world problems, in which case up to three or even four matrices of weights may be
employed. In these Multi-Layer Adalines, processing occurs one layer at a time as
described above but now the outputs from the first layer become the inputs for the
second layer (using a second weights matrix), the outputs from the second layer
become the inputs for the third layer and so on. In the Multi-Layer Adaline, the
normalisation vectors are not employed between layers as this is unnecessary; they are
only needed for the initial inputs and the final outputs.
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3. Method

Laboratory trial data on soldiers exercising in the heat were used to train the neural
network. Details of the trial objectives and conditions (Amos and Egglestone, 1995) are
summarised below:

Nine soldiers from 1%t Commando Regiment aged 19 to 26 participated in this trial.
Subjects wore the Disruptive Pattern Combat Uniform (DPCU) with undergarments
and boots and carried weights of approximately 11 kg. They walked on a motor-driven
treadmill, with a slope of 6% at 5 km.hr! for 100 minutes. Wind speed was set at 1.1
m.s and water consumption during the exercise was recorded. Peak metabolic rate
was estimated by measuring VOzpeax before the trial while the metabolic rate during
exercise was also estimated by measuring VO, with an open-circuit spirometer.
Personal information such as age, body weight and height was measured and recorded
before the trial commenced. The rectal temperature, heart rate and area weighted mean
skin temperature were measured continuously while the sweat rate was estimated by
the weight difference before and after walking. Two sets of experimental conditions
were provided for the exercise. For the first, the temperature was set at 30°C and 60%
Relative Humidity (RH); the second at 40°C and 30%RH. These two conditions
simulate typical climates at Townsville and Pilbara respectively.

A program to implement the Adaline was written in Gnu C++ on a 120MHz Pentium
computer running the Gnu Public Licence Unix 'Linux' but the resulting source code is
not system dependent. The single-layer Adaline written initially was expanded to two
and then three layers as the software matured.
The Adaline was provided with the following inputs:

* Subject details (nude weight, height, length of acclimatisation)

* Clothing properties (insulation, permeability and ‘bagginess).

* Environment (ambient temperature and relative humidity, wind speed, terrain

difficulty) factors.
e Total metabolic rate (calculated from equation 4, Givioni & Goldman, 1973).

In fact, all of these inputs were the same for all subjects except the personal weight,
height details and the calculated specific metabolic rate which depends (in part) on
individual body weight under the experimental conditions. The additional inputs were
provided against the possible use of the program with other experimental data. The
calculated outputs during the training were the 100 minute-by-minute body core
temperature measurements.

The written program was set up so that initially 50% of the generalisation stage errors
were used to correct the weights matrices until the most significant digit of the RMS
collation of the errors had been unchanged for 10 epochs. The error factor was then
divided by 10 and the next most significant digit of the RMS error monitored in the
same way. This algorithm was repeated a further four times until the RMS error had




become stable to one part in 1,000,000 which required less than 100 epochs or less than
two minutes on the computer in use. This level of training accuracy is considerably
more than the 0.1C° (0.1 Celcius degree) required to equal the accuracy of experimental
data and may be decreased if larger data sets result in long training times.

4. Results and Discussion

Table 1 shows the end-point (100 min) rectal temperature calculated by the
generalisation stage of the three-layer Adaline and the measured temperatures from
the 1995 AMRL laboratory studies. The measured end-point temperatures varied from
37.6°C to 38.7°C when subjects exercised in 30°C and 60% RH. The calculated values
ranged from 38.3°C to 38.7°C. This corresponds to a mean error of 0.3C°. Under
warmer and more arid conditions (40°C and 30% RH), the discrepancy between the
measured and calculated mean end-point rectal temperature changed to -0.2C°.

Table 1: The Measured and Calculated End-Point (100 minute) Rectal Temperature under Two
Simulated Tropical Conditions.

Environment 30°C and 60% RH Environment 40°C and 30% RH

Measured Calculated Measured Calculated

Subijects Temp (°C) Temp (°C) Temp (°C) Temp (°C)
A 38.4, 38.8v 38.4 38.2
B 38.3 38.4 38.7 38.4
C 38.7 38.4 39.0a 38.3v
D 38.3 38.7 38.5 384
E 38.1 38.6 38.5 38.2
F 38.4a 38.4p 39.0a 38.6b
G 37.6 38.3 nda 38.4y
H 38.2 38.6 38.5 38.6
I 37.9 384 38.6 38.5
Mean 38.2 38.5 38.6 38.4

Note: a Because the subject exceeded the experimental safe core temperature threshold (39.0°C)

or because of loss of good contact with the rectal temperature probe, a full 100 minute set of
measured data are not available in these instances.

b These end-point values were calculated after the network had been trained. The
parameter sets for these subjects were not part of the training process hence these points are
examples of the predictions that the network is capable of making.

The relationship between the measured and predicted end-point rectal temperature
was analysed by a linear regression analysis. The Pearson Correlation coefficients
between the measured and predicted rectal temperatures were 0.19 at 30°C and 60%RH
and 0.34 at 40°C and 30%RH. These results indicate that a positive but weak correlation
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existed between the predicted and the measured rectal temperatures in both
experimental conditions. /

The accuracy of prediction of Adaline-calculated end-point rectal temperatures can be
further evaluated by analysing their Specificity and Sensitivity. The definitions of
Sensitivity and Specificity are based on the criterion that a warning will be issued if
rectal temperature reaches or exceeds 38.5°C, the level at which some OH & S
practitioners accept as an upper safety limit for heat strain for civilians. Specificity is
defined as True Negative divided by (False Negative + True Negative)[TN/(FP+TN)],
Sensitivity as True Positive divided by (True Positive + False Negative) [TP/(TP+FN)]
(Reneau and Bishop 1996). Table 2 shows the resulting specificity and sensitivity values
for 100 minute end-point temperatures calculated by the Adaline.

Table 2: Sensitivity and Specificity Values for the Three-Layer Adaline Calculated Rectal
Temperatures Adopting an Upper Threshold of 38.5°C

30°C and 60% RH 40°C and 30% RH
Specificity 0.75 ' 1.0
Sensitivity 0 0.4

A good prediction model would have high Sensitivity and Specificity and high
correlation with the measured values. The lack of simultaneous high Specificity and
high Sensitivity and the generally low correlation between the measured and predicted
values suggests that this neural networking technique has relatively low predictive
precision. However, when the above results are compared with those obtained from
the original USARIEM program (Lau and Sanders, 1998), it is found that this infant
neural networking technique has achieved similar predictive precision to a program
which required significant resources to develop. The potential now exists for further
experimental data to be examined using this new technique. '

5. Conclusions

A neural network computer program was constructed and trained on human body
core temperature data obtained in a recent laboratory study of subjects exercising in
two tropical conditions. The validity of the calculated core temperatures was tested

against the measured core temperatures which were used to train the network. It was
found that:

1. The calculated final (100 minutes) rectal temperature had a Root Mean Square
error of 0.4 C° in the 30°C/60%RH environment and of 0.2 C° in the
40°C/30%RH environment. The difference between the two environments is
not significant.
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2. The calculated end-point temperatures did not show high correlation with
measured values nor did they display simultaneous high specificity and
sensitivity for a threshold core temperature of 38.5°C, suggesting a relatively
low prediction accuracy

3. The calculated end-point values showed a marginally higher correlation
coefficient and a slight improvement in the sensitivity and specificity than those
calculated by the original USARIEM computer program for the same subjects.

It is concluded that the Adaptive Linear Element neural networking technique with
Back-Propagation as the learning rule is worthy of further investigation as a tool for the
prediction of human physiological responses to thermal stress. A data set of only nine
subjects used for this study is insufficient to allow more definite conclusions to be
drawn. It is recommended that further evaluation on the validity of the Neural
Network program technique should be conducted against larger data sets measured
under a variety of experimental conditions.
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